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SUq, R+o (2) and SUq, ti( 2), the classical and quantum 
q-deformations of the SU(2) algebra: 11. The Hopf algebra, 
the Yang-Baxter equation and multi-deformed algebraic 
structures 

Zhe Changt, Wei Chent, Han-Ying G u o t j  and Hong Yant 
1 Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080, 
People’s Republic of China 
$ CCAST (World Laboratory), PO Box 8730, Beijing 100080, People’s Republic of 
China 

Abstract. the SU,(Z) algebra is realized by means of both the Poisson brackets 
in classical mechanics and commutators in quantum mechanics in a system with 
q-deformed oscillators of two different types. The structures of the Hopf algebra 
and the quantum Yang-Baxter equation are also discussed on a quantum level. A 
set of j-representations of the quantum algebra SUq(2)  is constructed based on the 
‘type-11’ q-oscillators. Multi-deformations of the oscillators of the two types and 
multi-deformed algebras expressed in Poisson as well as in Lie brackets are proposed. 

1. Introduction 

Conventionally, the quantum group [l-41 is the Hopf algebra which is neither com- 
mutative nor co-commutative. Thus it can be treated as the functional ring in non- 
commutative, i.e. quantum, space. From this point of view, a quantum group is the 
symmetry group in quantum space. Here the word ‘quantum’ can have two meanings, 
one is from canonical quantization in quantum mechanics, which is supplemented by 
the Planck constant h ;  another is from the Yang-Baxter equation (YBE) [5] rooted 
in many problems in quantum statistics. Also, solutions of classical YBE are closely 
related with classical or semi-simple groups, but solutions of quantum YBE related 
with quantum groups. These two meanings are keenly interrelated. 

However, as we have stressed in earlier work [6,7]t ,  the SU,(2) algebra can be 
realized in a classical mechanical system, and this algebra is expressed in Poisson 
brackets and is denoted as SU,,,,,(2) in [7] (hereafter referred to as (I)). Through 
canonical quantization, it becomes a quantum mechanical system, and the realization 
of SU,(2) by Poisson bracket, is canonically quantized to  form conventional SU,(2) 
algebra expressed in Lie brackets, and is denoted as SU,,,(2) in (I). As we empha- 
sized in (I) ,  the q-deformation and the canonical quantization in quantum groups are 
different from and independent of each other in principle, although q-deformations of 
quantum mechanical systems are widely discussed. 

t Reference [7] is the first of a series of papers on the classical and quantum q-deformations of the 
SU(2)  algebra. 

0305-4470/90/235371+12$l33.50 @ 1990 IOP Publishing Ltd 5371 
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In this paper, we put forward another model of q-deformed oscillators, based an 
on undeformed phase space V with undeformed symplectic form R ,  i.e. on the phase 
space and the symplectic structure of undeformed linear harmonic oscillators. In order 
to  distinguish the second model from the first one which is discussed in [6-111, we call 
the first ‘type I,, and the second ‘type 11’. In this paper, the SU9,,,,(2) and SU9,,(2) 
algebras are realized with the type-I1 q-deformed oscillators in classical and quantum 
systems respectively, and the latter can be reached through canonical quantization of 
the system as well. We also show that similar to the case of type I in (I)  the canonical 
motion of the type-I1 q-deformed oscillators in classical mechanics is exactly solvable, 
which is oscillation with frequency depending on amplitude. 

One of the tasks in this paper is to set up the Hopf algebraic structure and Yang- 
Baxter relation based upon the quantum q-deformed oscillators of both type I and 
type 11. To this end we start  by defining the co-multiplication, co-unit and antipodal 
map, and then give the Hopf algebras with multiplication operation. The derivation 
of the corresponding YBE is also shown. 

Another major purpose of this paper is to present a kind of new algebraic struc- 
tures: the multi-deformations of the SU(2)  algebra in Poisson brackets as well as in 
Lie brackets. As one is aware that the single-deformations of Poisson and Lie algebras 
are quantum algebras, it is natural to  study such a problem. Actually, the multi- 
deformations of the ordinary algebra SU(2), in Poisson and Lie brackets, denoted as 
SUq1q2, , ,9n,h-0(2)  and SU9192, , ,qn ,h(2) ,  respectively, when adding an extra generator 
H, i.e. the Hamiltonian of the undeformed system, do form a kind of new algebraic 
structure. In particular cases, the multi-deformed algebras go back to  the ordinary 
algebras SU(2) ,  in Poisson and Lie brackets. It is of interest that the multi-deformed 
algebras based upon the two different types of q-deformed oscillators are not the same, 
although the single-deformed algebras for the both cases are the same. 

This paper is arranged as follows. In section 2 ,  we give a realization of SU,,,,,(2) 
in a classical mechanical system with q-deformed oscillators of the second type, in 
symplectic space (V, n) without deformation. The equations of canonical motion and 
their solutions are given. Section 3 is devoted to  the canonical quantization to the 
system of q-oscillators, and the realization of SU9,,(2), as well as the Hopf algebra and 
quantum YBE by means of the quantum q-oscillators. In a certain metric, we show a 
set of orthogonal basis for SU,(2) based upon the oscillators of type 11. In section 4 ,  
The algebraic structures realized through multi-deformations are given for the cases 
of type I and two oscillators respectively. Finally, in section 5, we conclude with a 
brief discussion and make some remarks. 

2. SU,,,,,(2) via classical q-oscillators 

As in (I), we stress that  the q-deformation of a set of classical oscillators leads to  
SUB,h+0(2) symmetry via Poisson brackets, and through canonical quantization, we 
arrive a t  a quantum mechanical system with SU,,,(2) symmetry in Lie brackets. 
Now, we present the type-I1 q-deformed oscillators, and analyse how to realize the 
q-deformed algebra SU9>,,,(2) and SUq,,(2) with type-I1 oscillators. 

Let us start  with a classical mechanical system of oscillators with the following 
Hamiltonian 
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where the mass m and frequency wo are taken to be 1. The  symplectic structure in  
the phase space V is given by 

R = dq, A dp,. 

We introduce complex quantities zi and 2, 

so that (2.1) and (2.2) are rewritten as 

i=1 ,2  

R = -i d t ,  Ad?,. 
i = 1 , 2  

A set of observables can be constructed on the phase space (V ,  R) 

It  can be  easily checked that the observables J ,  and J ,  satisfy the following relations 
in Poisson brackets: 

which is jus t  the SU(2) algebra expressed by Poisson brackets. Here the following 
basic Poisson brackets, defined by the symplectic form 52 have been applied: 

(2. 19 f.} E = -i6.. '3 { z i , z j }  = 0 = 0. (2.8) 

Now we introduce the type-I1 q-deformed oscillators described by new variables on 
(Vl R) 

1 s inh(y t i t i ) -  zi (2.9) 2 .  = 1 sinh(yziZi) --I 

J- t i f i  zi z i =  ysinh y t i F i  

where y = log q and i = 1,2  without summation. Also, a set of new observables can 
be constructed based upon deformed and undeformed oscillators 

J ' - J  3 - 3 -1. - &1Fl - Z Z F Z ) .  (2.10) J' + - - I t 2  -1 JL = z 2 f i  

Note tha t  only the observables J i  are differ under deformation from those of the q- 
deformed oscillators of type I given in (I) ,  but that  the phase space ( V , R )  is free of 
deformation, as in the case of type-I q-oscillators in (I). I t  can be straightforwardly 
shown tha t  these observables obey the following relations: 

{ J : , J ' }  = -i[2J!J {JA1 J;} = -i(fJ;) (2.11) 
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where [z] = sinh(yz)/sinh y. This is just the classical q-deformed SU(2) algebra found 
in [6] and (I). But this time the algebra is realized by the q-oscillators of type I1 rather 
than type I in (I). 

To end this section, let us study the dynamics of the q-deformed oscillators of 
type 11, in parallel to  that  of the type-I q-deformed oscillators provided in (I). The 
Hamiltonian of the type-I1 q-deformed oscillators is 

H‘ = + ~ ’ 7 ’  - - 1 ( sinyl;flll + sinh2 y z , l ,  ) . (2.12) 
- ys inhy  *2% 

Also we can show easily that 

{ H’, Y2} = O { H’, J ; }  = 0 (2.13) 

which have counterparts in the quantum theory, i.e. the quantum operators H‘,  J t 2  
and Ji commute and hence have simultaneous eigenstates. 

The Hamiltonian in (2.12) gives rise to  canonical equations of motion 

(2 .14)  
1 yB sinh(2yB) - sinh2(yB) 

Qi 
- dpi = {pi ,H’} 1 -- 
dt y sinh y 8 2  

dqi - 1 yB sinh(2yB) - sinh2(yB) 
- {qilH’} = - Pi. - 

dt y sinh y B2 

where B = $(pf + q?) .  
exact solutions exist for these two equations of motion as follows: 

(2.15) 

(2.16) 

2 yA? sinh(yA:) - 2 sinh2(yiA?) 
A; 

2 yA? sinh(yA:) - 2sinh2(yiA:) 
qi = Aisin - { [ T  sinh Y A4 

Obviously, the motion of the classical type-I1 q-deformed oscillators is still har- 
monic with the frequencies depending on the amplitudes, similar to  the result for the 
q-deformed oscillators of type I shown in [6] and (I) .  But the relation between the 
frequencies and the amplitudes is more complicated than the former one 

2 y Af sinh( y A:)  - 2 sinh2 ( y  $A?) 
WO 

w!  = - ’ ys inhy  A; 

and as we noted at  the beginning, w,, is taken to  be 1 

(2.17) 

3. SU,,?(2), the Hopf algebra and the quantum Yang-Baxter equation & 
la q-oscillators 

In the last section, we discussed the realization of the classical q-deformed algebra 
SUq,h-o(2)l the Hopf algebra and ‘quantum’ Yang-Baxter equation in a system of 
undeformed and q-deformed and undeformed oscillators of two different types. In 
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this section, we study the canonical quantization of the system of type-I1 q-deformed 
oscillators and prove that the quantized system leads to SUq,h(2) .  We also show the 
Hopf algebra and quantum Yang-Baxter equation for SU,(2)  via both type-I and 
type-I1 q-deformed oscillators. 

As we remarked, the  undeformed observables J ,  and J 3 ,  and the deformed ones 
J$ , JA are all defined on the phase space ( V , n ) .  Therefore the canonical quantiza- 
tion should be carried directly out by replacing the basic Poisson brackets by basic 
commutators for operators, while the variables {zi, Ti, zj ,  2 : )  are replaced by operators 
{ a ! ,  a i ,  a i t ,  a i } ,  respectively. The  basic commutators are 

[ U i ,  a;] = bij  [ a .  1 '  a . ]  3 = [ U t ,  4 = 0. 

(3.2) 3 - &la1 - a*%) .  
J ,  = .!a2 J -  = a Z a l  t J - 1 

[ J 3 ,  J*I = k J ,  [ J + ,  J-I = 253.  ( 3 . 3 )  

(3.1) 
where i, j = 1,2. For the undeformed observables J ,  and J 3 ,  their quantum counter- 
parts 

t 

which form the SU(2) algebra 

As is well known for the harmonic oscillator representation of SU(2), we have a 
complete set of eigenfunctions 

(3 .4)  

which satisfy 

J ,  l j ,  4 = d ( j  F m)( j  k m + 1) lj, m f 1) J31jr m) = mlj, m). (3.5) 

(3.6) 

T h e  inner product (or metric) is defined in the following way: 

(fld = (Olf(a1, a,)g(al ,  4 1 0 ) .  
So the states (3.4) are orthogonal and can be normalized. Tha t  is they are a set of 
orthogonal (and unitary, if one so requires) basis of the Lie algebra SU(2) .  

While quantizing the deformed oscillators in this system, we have to choose a 
proper normal ordering. I t  may be so chosen that 

sinh(yNi) - sinh ( r (Ni  + 1)) 
a: = aad*Ni - J*(NZ + l ) a i  

(3.7) 

where Ni = a /a ,  is particle number operator for the i th ordinary harmonic oscillator. 
From the above relations, one can see without any difficulty that 

,t s inhy  ([]Vi + 112 - -> [NI2 b i j .  [ d i , U j ]  = - Y Ni + I ,vi 
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Needless to say, this is clearly a new model of q-oscillators which is different from the 
case given in (I). 

The  quantum counterparts of the deformed observables (2.10) are 

and form the  

(3.10) 

As in (I) ,  we call this algebra SU,,,(2). differing from SUq,h-+o(2), which is expressed 
in Poisson brackets. The  reader may have noticed tha t  the factor s inhy /y  does not 
appear in some of the  literature. But ,  i t  has no essential meaning. Actually, this 
factor disappears when one rescales the operators J ;  and JI_. 

Let us now construct the representation space with the Fock space of the system 
with type-I1 q-oscillator, i.e. 

(3.11) 

and then we have 

(3.12) 

which are the q-deformed counterparts of (3.4) and (3.5). 
The  inner product may be given by 

the states given in (3.11) are a set of orthogonal states and can be normalized, i.e. 
they form a q-deformed j-representation. 

Since the q-deformed SU(2) algebra is the same for the oscillators of types I and 11, 
the following constructions of the Hopf algebra and the Yang-Baxter equation are ap- 
plicable to both cases. Let us first set up the Hopf algebraic structures of SU,,,(2). 
Denote the set of operators J ; ,  JA and 1 by A .  The brackets of operators are compat- 
ible with the definition of the multiplicationt 

m : A @  A + A .  (3.14) 

Besides the multiplication, one may define the co-multiplication and the antipodal 
map,  as well as the co-unit. The  co-multiplication A : A -+ A 8 A is defined by 

(3.15) 

t Hereafter in this section we use the same notation a s  that used in [17]. 
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the antipode y : A - A acts as 

(3.16) 

and the co-unit E :  A + C reads 

E ( J ; )  = € ( J A )  = 0 E(1 )  = 1. (3.17) 

It is not difficult to  check that the above defined co-multiplication A and co-unit 
E are algebraically the homomorphism A ( a b )  = A ( a ) A ( b ) ,  € ( a b )  = E(a)c (b ) .  The 
antipodal mapping y is algebraically the anti-homomorphism y ( a b )  = y(b)y(a). The  
four operations also satisfy the following relations: 

(id @ A)A(a)  = ( A  @ id)A(a) 

m(id @ y)A(a)  = m(y @ id)A(a) = € ( a )  1 

( E  @ id)A(a) = (id @ c)A(a) = a 

(3.18) 

where a ,  b ,  c E A .  In other words, ( A ,  m, A ,  y ,  c)  satisfies all the axioms of a Hopf 
algebra, but is set up by q-oscillators. 

Now we are ready to  construct the R matrices satisfying the quantum Yang-Baxter 
equation based upon the Hopf algebraic structure in the Lie brackets. We first define 
permutation mapping u 

u : A @ A - A @ A  u ( a @ b )  = b @ a  (3.19) 

and introduce 

then we have 

and 

(id @ A ) ( R )  = R13R1, 

( A  @ id)( R )  = R&23 

( y  8 id)(R) = R-’. 

(3.20) 

(3.21) 

(3.22) 

In other words, ( A ;  m, A ,  E ,  y ,  a;  R )  is a quasi-triangular Yang-Baxt,er algebra. 
From (3.21) and (3.22)) we easily obtain 

R12R13R23 = R23R13R12 (3.23) 

which is just the qiiantum Yang-Baxter equation. 
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4. Multi-deformed SU( 2) algebraic structures 

As was briefly introduced in section 1, the q-deformation can be performed repeatedly 
on the already q-deformed oscillators. Multi-deformations are obviously meaningful 
and generically, they can be with different q-parameters. Thus we have a chain for 
the relations between the variables in the different deformations: 

(4 .1)  qrl (n)  -(n) qn+ l , .  , 
( Z i , ~ ~ ) ~ ~ Z ~ , ~ ~ ) ~ ~ ~ ~ ~ , ~ ~ ) ~ ~ ~ ~  -----9 ( t i  l z i  1 

As in the single-deformation case, neither the phase space nor the symplectic 
structure is changed. The only things that undergo deformation are the generators 
J,. In the following, we assume that q is real for simplicity. I t  can be easily verified 
that the algebra generated by Jp', J?) and H stands for both types of q-deformed 
oscillators at the classical as well as the quantum level. We stress, however, that  the 
multi-deformed algebras realized by type-I and type-I1 q-oscillators are different in 
appearance, although in nature they have common points. 

Firstly, recall that  for the classical q-deformed oscillators discussed in (I) , the 
complex variables aret 

(4 .3)  

where y1 = logql, Ni  = ziFi and new denotation is used for simplicity, [zIrl = 
d m [ z ] ,  Then we introduce multi-deformed variables for this syst'em 

Observables can be made in this n-fold deformed system 

When supplemented by the Hamiltonian H for the undeformed system, the algebra 
of the observables defined above can be found by straightforward calculation 

{H, J P ) )  = o {H, J$"'> = o {~i" ' ,  J Y ) >  = ( - i ) ( h J y ) )  (4.6a) 

where the n-fold square bracket was applied 

(4.6b) 

t For simplicity, we take the phases a , ( z , ,  Z,) = 0 ,  i = 1 , 2 .  
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This n-fold deformed algebra is denoted (1)SU,,,,..,,n,h-o(2), in order to be distin- 
guished from tha t  realized by the type-I1 q-oscillators, which is discussed in the fol- 
lowing and is referred to as type 11, denoted (11)SU~l ,2 , , . ,n ,~-o(2) .  

The  complex variables for the single-deformed system are provided in (2.9) and 
the n-fold deformed variables are 

One can have the following algebraic relations for the type-I1 q-deformed system, when 
supplemented by the Hamiltonian H for the undeformed system, 

(4.8b) 

where the  angular bracket was applied, the single angular bracket being ( x ) ~ ,  = [ x ] ~ , ,  
the two-fold angular bracket ( z ) ~ ~ ~ ,  = [ [ X ] ~ , / X ] , , / ( [ ~ ] ~ , / ~ )  and the n-fold angular 
bracket 

We denote the multi-deformed algebra by (")SU q 1 q 2  ,,,h-0(2), as already noted 
above. I t  is clear that  that  type I and I I  algebras coincide for the case n = 1, but 
remain different otherwise. 

When one makes the canonical quantization in these multi-deformed systems of 
oscillators, follows the same procedure applied in last section to single-deformed sys- 
tem, one may get the quantum multi-deformed algebraic structures as before, however, 
we need to  fix a n  ordering, so that we have H. the Hamiltonian of the undeformed 
system, and the generators @I, Ji"' as follows, 

where the creation and annihilation operators are 
I 

and 7 ,  = logq,, and Njn-')  is the particle number operator for the i t h  (n - 1)-fold 
deformed q-oscillator. The  algebra satisfied by these generators is 

[H, J i " ) ]  = 0 [ J i " ) ,  J p ) ]  = ( - i ) ( k J c ) )  ( 4 . 1 1 ~ )  [H, J p ) ]  = 0 

[JP) ,  J?'] = [H/2 + J3]yly2 7n [H/2 - J3 + %y2 yn 

- [ H P  - J3171y, yn + J3 + 1Iy1y2 7" (4.11b) 
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This algebra is referred to  be (1)SUq19z...q,,h(2), as the quantum counterparts of the 
multi-deformed algebra ( l )SUqlqz . ,  .q* ,h-o (2). 

The n-fold deformed algebra realized by type-I1 q-deformed oscillators a t  quantum 
level is spanned by the Hamiltonian H of the undeformed system and the generators 
J!"', $1 as follows: 

Here the creation and annihilation operators are 

The algebra satisfied by the generators in (4.12) is referred to as (")SU 9192 . Q n ~ f i ( ~ )  

When qn = 1, the n-fold deformed algebras go back to the ( n  - 1)-fold deformed 
algebras. When every parameter qi is 1, these algebras reduce to SU(2). Hence, the 
n-fold deformed algebras are generalizations of the SU, (2) algebra. 

When the parameters pi are roots of unity, one may have the chain truncated, i.e. 
a certain step of deformation may no longer be deformable [12]. For example, when q i  
is the fourth ranked root of unity, then the chain stops here, because this q-oscillator 
is not deformable, i.e. the further deformed form of this oscillator is identical to  the 
oscillator without this further deformation[l4]. 

5 .  Discussions and remarks 

In (I) and this paper we have realized SU,,,,,(2) algebra in a classical system with the 
q-deformed oscillators of two different types by means of Poisson brackets, and then 
through canonical quantization, we have obtained its quantum counterpart, SU9,,(2) 
by means of Lie brackets. A set of j-representation of the quantum algebra SU9(2) 
is constructed based on the type-I1 q-deformed oscillators, and it is pointed out that  
with a given metric, Ijm) are a set of orthogonal bases. We have also investigated 
multi-deformations of the q-oscillators and the multi-deformed algebras expressed i n  
Poisson and Lie brackets for both the type-I and type-I1 q-oscillators respectively. The 
structures of the Hopf algebra and the quantum Yang-Baxter equation for SU9,,(2) 
have LISO been realized in the quantum q-oscillator systems. Although we have not 
touched the Hopf algebraic structure of the SU9,h+o(2),  it is reasonable to expect that  
there should be some non-trivial Hopf algebraic structure relevant to SU9,,-o(2) a t  
the classical level. We would leave this subject for further investigations. 

It is of interest to see that the q-deformation of type I1 discussed in section 2 is 
also a kind of Beltrami transformation or quasiconformal deformation [13], as was the 
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case in (I)  for the q-deformation of type I. Actually, from (2.33), one has  Beltrami 
coefficients in  the phase space V of 

satisfying 

Since the Beltrami deformation has an inverse, the transformation between the old 
Beltrami deformation given in (I) and the new deformation described above can easily 
be combined to form a single Beltrami transformation. Hence, the transformation 
between the q-deformed oscillators of type I and type I1 is also a Beltrami transfor- 
mation. 

For the case of multi-deformations, as quasi-conformal transformations in  general 
form a group in certain sense, there might be an additional algebraic structure on 
the chain of the multi-deformations. It is also reasonable to expect that the multi- 
deformations should be relevant to certain algebraic structures of the Hopf type and 
of the Yang-Baxter type. 

When the parameter q is a root of unity, interesting mathematical and physical 
results for type I have been obtained; these are partially dealt with in [14]. We will 
also explain this issue for the both cases in detail in the forthcoming paper [12]. 

In (I) and this paper, we have dealt with the deformations of the SU(2) algebra 
only. However, it is clear that not only the method but also the main results have 
a general meaning. First, just as one can easily transfer SU(2) to SU(1, 1) by means 
of the Weyl unitary trick, the classical and quantum q-deformations of the SU(1, l )  
algebra may be reached from that of the SU(2)  algebra. For more general cases, such 
as A N ,  BN, CN and DN algebras as well as their non-compact counterparts, similar 
realizations exist for the q-deformed algebras at both classical and quantum levels, 
which will be analysed in detail in a separate paper [15]. 

Finally, it should be remarked that the approach proposed in [GI and (I) as well 
as in this paper to realize the q-deformed algebras is based on a set of deformed 
and undeformed oscillators on undeformed symplectic space. However, there is an 
alternative approach, proposed by Shao-Ming Fei and Han-Ying Guo [lG], to realize the 
q-deformed algebras at both classical and quantum levels by deforming the symplectic 
geometry rather than the observables. It is of course meaningful to see whether their 
approach can be applied to the harmonic oscillators. This and other relevant subjects 
are under consideration. 
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